95 research outputs found

    New mathematical model for assessment of concurrent engineering.

    Get PDF
    Recently, global competition has led to shorter product life cycles and increased technological sophistication. Products are becoming more complex due to rapid technological developments and increasing consumer demands for lower costs, greater variety, and greater performance. At the same time the proliferation of new technologies is rendering products obsolete at an increasingly rapid pace. These market and technology trends lead to the emerging of concurrent engineering. This thesis firstly will give a definition and briefly introduction of concurrent engineering, including its fundamentals, and the benefits of concurrent engineering, its difficulties and caveats. After that this thesis will introduce an implementation method for concurrent engineering. This thesis will focus on concurrent engineering assessment model; the purposes of concurrent engineering assessment model are providing information about your current state of affairs. It describes how things are done now and how well they are being done. Firstly, two existing assessment models will be introduced. The existing assessment models are focused on the present situation; they only assess the present situation, they do not assess the past situation, and the future situation; most of these models look like a questionnaire, the assessment is highly subjective and not very accurate. This thesis will focus on constructing a mathematical assessment model, making the assessment much more objective and accurate. All in all, the major contribution of this thesis research is the constructing of the mathematical assessment model. This new model describes the history and the future of company, assessing the company\u27s performance, exposing practical problems and identifying potential improvements.Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .J53. Source: Masters Abstracts International, Volume: 45-01, page: 0436. Thesis (M.A.Sc.)--University of Windsor (Canada), 2006

    A colorimetric method for point mutation detection using high-fidelity DNA ligase

    Get PDF
    The present study reported proof-of-principle for a genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) through the gold nanoparticle assembly and the ligase reaction. By incorporating the high-fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation-based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single-base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold nanoparticle-tagged probes to hybrid with the target DNA strand, a ligase reaction that generates the ligation between perfectly matched probes while no ligation occurred between mismatched ones and a thermal treatment at a relatively high temperature that discriminate the ligation of probes. When the reaction mixture was heated to denature the formed duplex, the purple color of the perfect-match solution would not revert to red, while the mismatch gave a red color as the assembled gold nanoparticles disparted. The present approach has been demonstrated with the identification of a single-base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild-type and mutant type were successfully scored. To our knowledge, this was the first report concerning SNP detection based on the ligase reaction and the gold nanoparticle assembly. Owing to its ease of operation and high specificity, it was expected that the proposed procedure might hold great promise in practical clinical diagnosis of gene-mutant diseases

    Production and decay of the neutral top-pion in high energy e+ee^{+}e^{-} colliders

    Full text link
    We study the production and decay of the neutral top-pion πt0\pi_{t}^{0} predicted by topcolor-assisted technicolor(TC2) theory. Our results show that, except the dominant decay modes bbˉb\bar{b}, tˉc\bar{t}c and gggg, the πt0\pi_{t}^{0} can also decay into γγ\gamma\gamma and ZγZ \gamma modes. It can be significantly produced at high energy e+ee^{+}e^{-} collider(LC) experiments via the processes e+eπt0γe^{+}e^{-}\to \pi_{t}^{0}\gamma and e+eZπt0e^{+}e^{-}\to Z\pi_{t}^{0}. We further calculate the production cross sections of the processes e+eγπt0γtˉce^{+}e^{-}\to\gamma\pi_{t}^{0}\to\gamma\bar{t}c and e+eZπt0Ztˉce^{+}e^{-}\to Z\pi_{t}^{0}\to Z\bar{t}c. We find that the signatures of the neutral top-pion πt0\pi_{t}^{0} can be detected via these processes.Comment: Latex file, 13 Pages, 6 eps figures. to be published in Phys.Rev.

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Thermal annealing influence on poly(3-hexyl-thiophene)/phenyl-C61-butyric acid methyl ester-based solar cells with anionic conjugated polyelectrolyte as cathode interface layer

    No full text
    Thermal annealing dependent performance was demonstrated in poly(3-hexyl-thiophene):phenyl-C61-butyric acid methyl ester based organic photovoltaics with anionic conjugated polyelectrolyte (PFEOSO3Na) as the cathode interface layer. The best performance can be achieved when the device based PFEOSO3Na was treated by post-annealing, exhibiting about 20% higher power conversion efficiency than the control device. Atomic force microscopy studies showed that the morphology of interface layers changed under different device treatment processes, leading to various electron extraction efficiencies. Compared with different interface materials, it further demonstrated the best charge extraction efficiency in the device with PFEOSO3Na layer, due to its stronger interface dipole. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759148
    corecore